

Offshore-Windenergie – Status und Perspektiven (inkl. energiewirtschaftliche Bedeutung und Kostensenkungspotenziale)

Andreas Wagner, Geschäftsführer Stiftung OFFSHORE-WINDENERGIE

Jubiläumssymposium des SWE Stuttgart, 24. Juli 2014

Stiftung OFFSHORE-WINDENERGIE

- 2005 gegründet
- Überparteiliche, unabhängige und gemeinnützige Einrichtung zur Nutzung und Erforschung der Windenergie auf See
- Erwerb der Eigentumsrechte am Testfeld alpha ventus (09/2005);
 Begleitung und Moderation des Gesamtvorhabens
- Büros in Varel (seit 2005) und Berlin (seit 2011),
 8 Mitarbeiter plus Vorstand und Präsidium (ehrenamtlich)
- Ganze Breite der Stakeholder der Offshore-Windenergie in Stiftungsgremien vertreten - Kuratorium mit Vertretern aus Politik, Industrie, Forschung und Verbänden, AG Betreiber

Unsere Arbeit

- Unabhängiges Sprachrohr und Kommunikationsplattform für Politik, Wirtschaft & Forschung
- Durchführung von Drittmittelprojekten
- Moderationsprozesse und Impulsgeber (Initiativen/Studien)
- Informationen, Presse- & Öffentlichkeitsarbeit

Faktencheck Offshore-Wind I

Offshore Windenergie ist eine junge Technologie mit großem wirtschaftlichen und energiewirtschaftlichem Potenzial

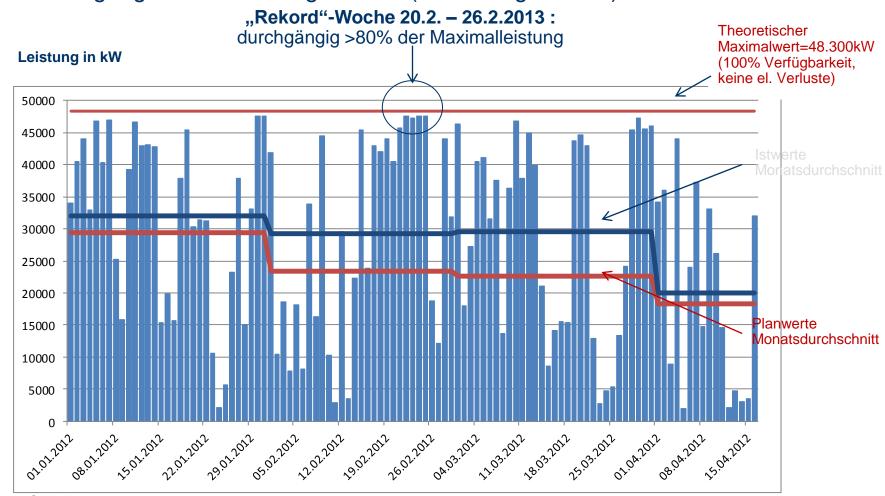
Fakten		Folgerungen
Offshore-Wind steht am Anfang der Lernkurve (anders als PV und Onshore)	•	Offshore-Wind benötigt "Anschub- förderung", hat aber erhebliches Kostensenkungspotential
 Die normalisierte Einspeisevergütung für Offshore ist heute niedriger als bei PV (auf 20 Jahre: 10,5 vs. 11,0 ct/kWh) 	•	Offshore-Wind ist bei weitem nicht so förderungsintensiv wie oft behauptet
Derzeit werden Offshore-Parks einzeln realisiert	•	Synergien zwischen benachbarten Windparks liegen auf der Hand
Offshore-Windparks erreichen über 4000 Vollaststunden - deutlich mehr als PV und Onshore-Windparks	•	Der energiewirtschaftliche Wert von Offshore-Strom ist höher als der von PV- oder Onshore-Wind-Strom

▶ Vollaststunden und kostenseitige Lernkurve machen Offshore wettbewerbsfähig

Faktencheck Offshore-Wind II

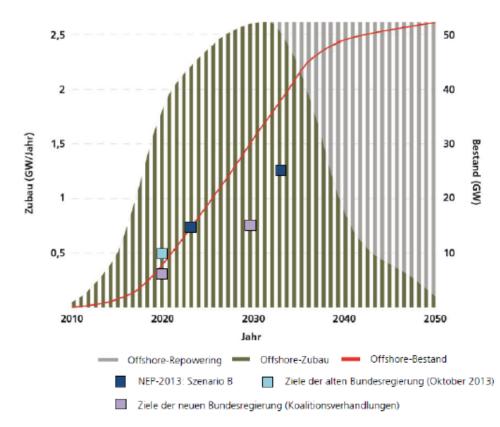
Offshore Windenergie ist für die deutsche Energiewende unverzichtbar

	Fakten		Folgerungen
•	Stetigere Erzeugung führt zu geringerem Speicherbedarf	•	 Wind Offshore ist nötig, um exzessiven Bau von Speichern zu verhindern
•	Die Kosten des notwendigen Netzausbaus sind kaum vom Ausbau Wind Offshore abhängig	•	Netzausbau ist kein Argument gegen Offshore; ohne Netzausbau wird die Energiewende in keiner Form gelingen
•	Bei einem Stopp von Offshore-Wind und Ersatz durch Onshore-Wind müssten zur Erreichung der EE-Ziele in Deutschland ca. 25.000 zusätzliche WEA Onshore errichtet werden		Die Ziele Deutschlands bei EE sind ohne Offshore kaum zu erreichen

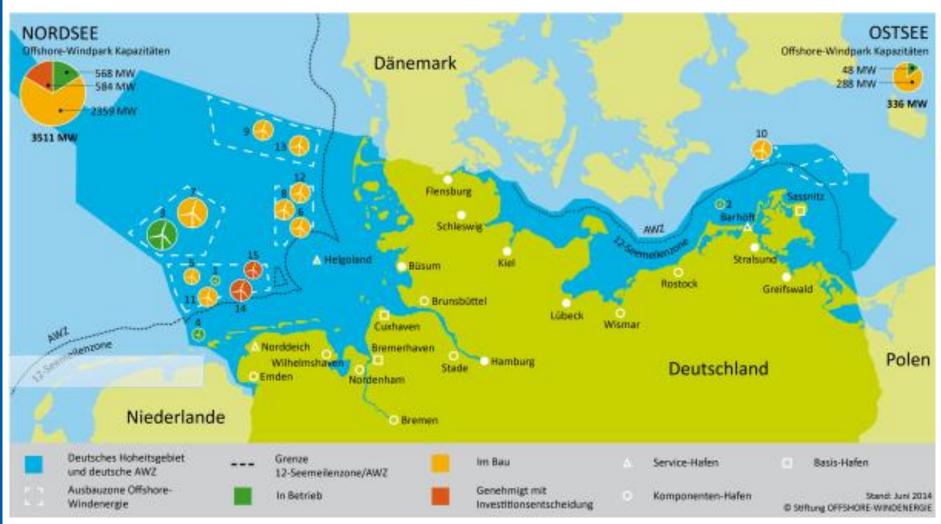

➡ Ohne Offshore-Wind ist die deutsche Energiewende massiv gefährdet

Erste Betriebsergebnisse Ostsee

Fallbsp. 2 - Betrieb EnBW Baltic 1


Bestätigt die für offshore-typischen langen Phasen mit hohen Erzeugungs- bzw. Leistungswerten (Basis: Tageswerte).

Politische Ausbauziele für Offshore-Wind (2020 und 2030)



- 6,5 GW bis 2020 (+1,2 GW Netzkapazitäten)
 - 33 Prozent im Vergleich zum 10 GW-Ziel (NREAP von 2010)
- 15 GW bis 2030
 minus 25-40 Prozent als ursprgl. Ziel von 20-25 GW (Offshore-Strategie 2002 und IEKP der BReg)
- ⇒ Kumulierte Investitionkosten
 (exkl. Offshore-Netzanbindung):
 - ca. 25 Mrd. Euro bis 2020
 (Annahme: ca. 4 M€/MW)
 - ca. 50 Mrd. Euro bis 2030
 (Annahme: ca. 3,5 M€/MW)
- ⇒ Neues Ziel für 2030 entspricht Zubau von 800 MW p.a. (nach 2020) d.h. gebremste Ausbaudynamik, statische Entwicklung

Offshore-Windparks in Deutschland Ausbaustand 06/2014

Siehe auch <u>www.offshore-windenergie.net</u>

Offshore Windparks in Deutschland Ausbaustand 1. Halbjahr 2014

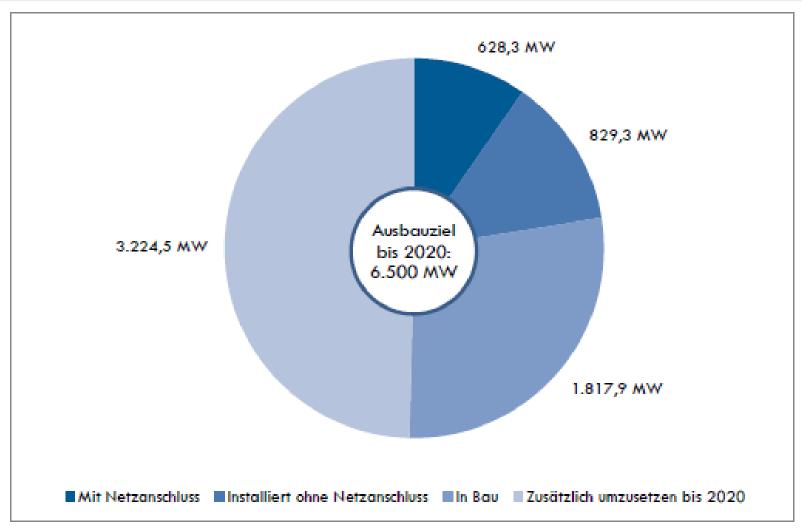


Abbildung 2: Offshore-Leistung in konkreter Umsetzung (d.h. mindestens in Bau befindlich) und ihr Anteil an dem Ziel der Bundesregierung von 6.500 MW bis 2020

Offshore Windparks in Deutschland In Betrieb und am Netz (Q2/2014)

alpha ventus (DOTI)

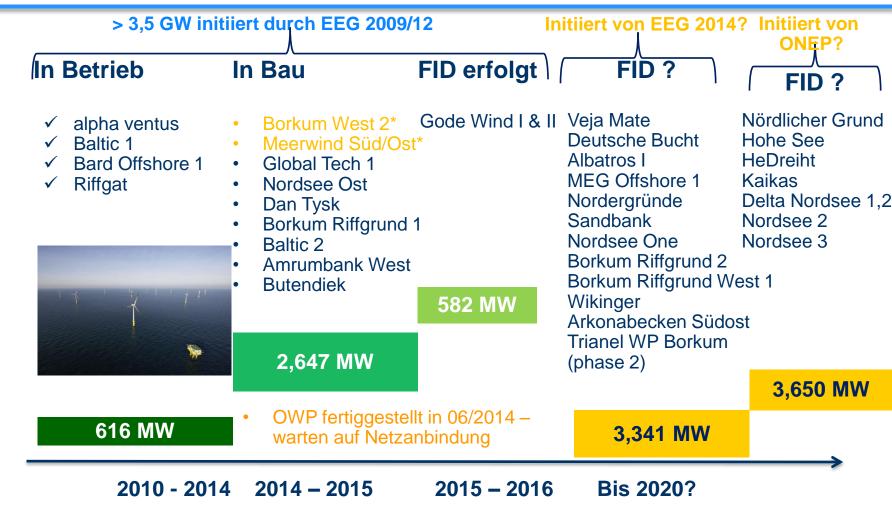
In Betrieb seit 04/2010
12 OWEA, 60 MW Gesamtleistung
30 m Wassertiefe, 45 km Küstenentfernung
Jährliche Stromproduktion ca. 250 GWh

Baltic 1(EnBW)

- In Betrieb seit 05/2011
- 21 OWEA, 48 MW Gesamtleistung
- 18 m Wassertiefe, 15 km Küstenentfernung
- Jährliche Stromproduktion ca. 190 GWh

BARD Offshore 1 (BARD/Ocean Breeze)

- In Betrieb seit 08/2013
- 80 OWEA, 400 MW Gesamtleistung
- 40 m Wassertiefe, 90 km Küstenentfernung
 120 km HGÜ Seekabel


Riffgat (EWE)

- In Betrieb seit 02/2014
- 30 OWEA, 108 MW Gesamtleistung
- 20 m Wassertiefe, 15 km Küstenentfernung
- Verzögerte Netzanbindung (OWP betriebsbereit seit 08/2014)

Überblick Offshore Windparks in Deutschland

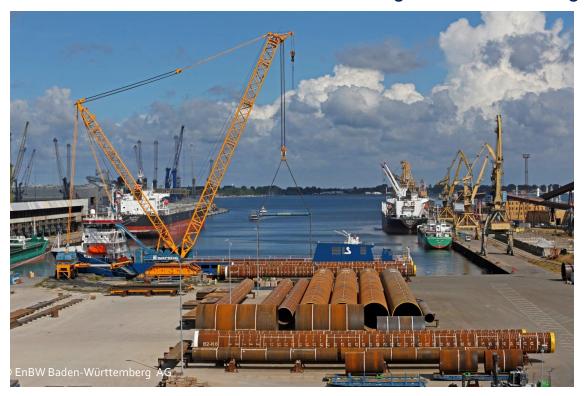
(Status Juni 2014)

Insgesamt > 20 weitere OWP vollständig genehmigt – d.h. knapp **7 GW zusätzliche Kapazitäten**

Amrumbank West (288 MW)

- Baubeginn: April 2013
- Inbetriebnahme_{geplant}: ab Q1/2015
- Netzanbindungsverzögerung: > 12 Monate
- <u>Baufortschritt:</u> 30 Fundamente installiert, UW errichtet, Innerparkverkabelung in Bau, OWEA ab Januar 2015
- Inbetriebnahme / Netzeinspeisung vssl. bis Q3/2015
- Wassertiefe: 19-24 m
- Küstenentfernung: ~ 40 km

Baltic 2 (288 MW)


Baubeginn: Juli 2013

Inbetriebnahme_{geplant}: ab Ende 2014

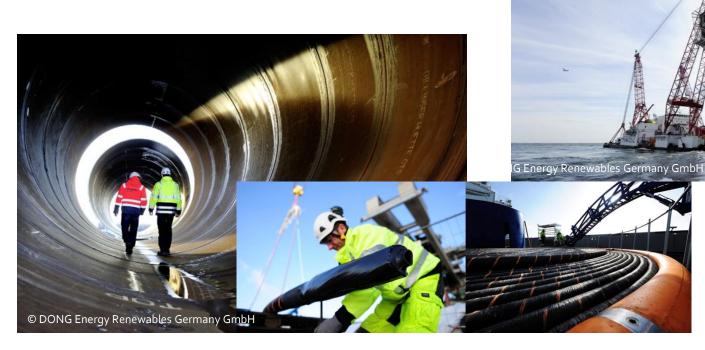
 Baufortschritt: Monopiles und Jacketpiles eingebracht, Errichtung Jackets ab Mitte 2014, Turbinenfertigung, Parkverkabelung ab Mitte 2014, UW bis Ende 2014, Errichtung OWEA ab Sommer 2014

Inbetriebnahme / Netzeinspeisung vssl. bis Frühjahr 2015

Wassertiefe: 23-44 m, Küstenentfernung: 32 km nördl. Rügen

Borkum Riffgrund 1 (312 MW)

Baubeginn: 2013


Inbetriebnahme_{geplant}: Herbst 2014

• Baufortschritt: 45 Fundamente errichtet

Inbetriebnahme / Netzeinspeisung.bis 2015

Wassertiefe: 28 bis 32 m

Küstenentfernung: 54 km

Butendiek (288 MW)

- Baubeginn: April 2014
- Inbetriebnahme_{geplant}: Mitte 2015
- Netzanbindungsverzögerung: 3 Monate
- Baufortschritt: 36 Fundamente errichtet, UW installiert, Parkverkabelung ab Mitte Juni 2014
- Inbetriebnahme / Netzeinspeisung ab Ende 2014
- Wassertiefe: 17 bis 22 m
- Küstenentfernung: 32 km von Sylt, 53 km vom Festland

DanTysk (288 MW)

Baubeginn: Ende 2012

Inbetriebnahme: Oktober 2014

Netzanbindungsverzögerung: 12 Monate

 Baufortschritt: Fundamente & UW in 2013 errichtet, Parkverkabelung zu 70% verlegt, Errichtung OWEA bis September 2014 abgeschlossen

Inbetriebnahme / Netzeinspeisung ab Herbst 2014

© DanTysk Offshore Wind GmbH

Wassertiefe: 21 bis 32 m

© DanTysk Offshore Wind GmbH

Küstenentfernung: 70 km westl. Sylt

Global Tech I (400 MW)

- Baubeginn: Mitte 2012
- Netzanbindungsverzögerung: 24 Monate
- Baufortschritt: UW errichtet, 78 Fundamente / 26 OWEA installiert
- Inbetriebnahme / Netzeinspeisung: ab Herbst 2014 (BorWin II)
- Wassertiefe: 39 bis 41 m
- Küstenentfernung: 110 km vor Cuxhaven

Meerwind Süd/Ost (288 MW)

Baubeginn: 2012

Inbetriebnahme_{geplant}: 2013

Netzanbindungsverzögerung: 24 Monate

Baufortschritt: Fundamente, UW, OWEA vollständig errichtet seit März 2014

Inbetriebnahme / Netzeinspeisung vssl. bis Oktober 2014

Wassertiefe: 30 m

Küstenentfernung: 23 km nordöstl. Helgoland bzw. 105 km Cuxhaven, und 120 km

von Bremerhaven

Nordsee Ost (295 MW)

VORWEG GEHEN

Baubeginn: 2012

Inbetriebnahme_{geplant}: Herbst 2013

Netzanbindungsverzögerung: ca. 24 Monate

Baufortschritt: Fundamente, Parkverkabelung, UW vollständ

errichtet

Errichtung OWEA ab Mai 2014

Inbetriebnahme / Netzeinspeisung geplant Frühjahr 2015

Wassertiefe: 22 bis 26 m

Trianel Windpark Borkum (1. BA 200 MW)

Baubeginn: Sommer 2011

Inbetriebnahme_{geplant}: Ende 2012/Anfang 2013

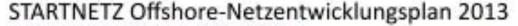
Netzanbindungsverzögerung: 18 Monate

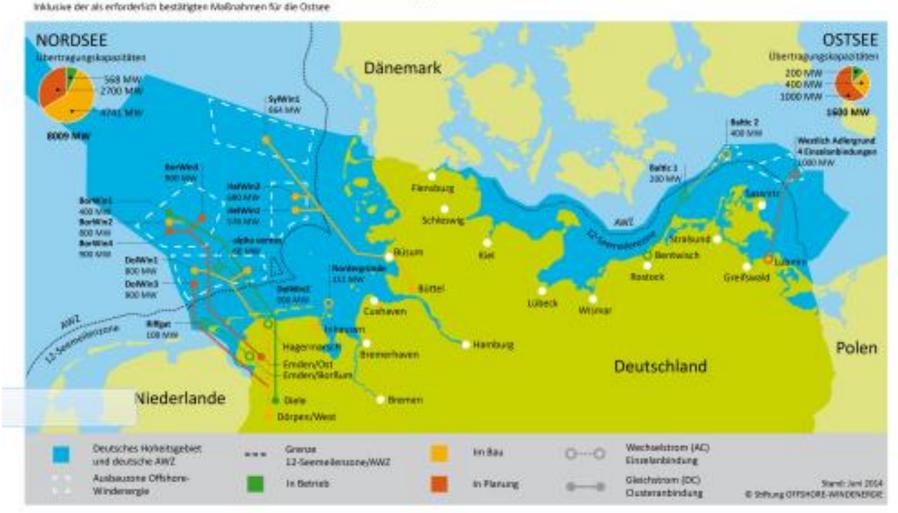
Baufortschritt: Errichtung Fundamente, UW, Parkverkabelung und OWEA seit

01.06.2014 abgeschlossen

Inbetriebnahme / Netzeinspeisung vssl. bis Sommer 2014 abgeschlossen

Wassertiefe: 29 bis 33 m


Küstenentfernung: 45 km nördl. Borkum



Status Offshore-Netzanbindung in Deutschland (06/2014)

Siehe auch www.offshore-windenergie.net

Lange Leitung: Offshore-Gesetzgebung

2006 2009 seit 2010 seit 2011

§17 (2a) EnWG (Netzanbindungsverpflichtung, Rechtzeitigkeit) Einführung Netzanbindungssystem gem. Positionspapier (PP) der BNetzA (Kriterien) Netzanbindungsverzögerungen > 30 Monate bis zu 50(+) Monate Diskussion um Haftungs- und Finanzierungsproblematik

2011 EEG/EnWG-Novelle, Energiewendegesetzgebung04.08.2011 Veröffentlichung im Bundesgesetzblatt01.01.2012 Inkrafttreten EEG 2012

07.11.2011 seit Ende 2011(Nordsee)

TenneT Schreiben (,Brandbrief') an die BReg keine termingerechten Verfahren (Ausschreibung/Vergabe) gem. PP BNetzA

I. Quartal 2012 02.07.2012 AG Beschleunigung Offshore-Netzanbindung (BMWi / BMU) – moderiert von SOW Eckpunkte der BReg (BMWi, BMU) zur Haftung / Systemwechsel

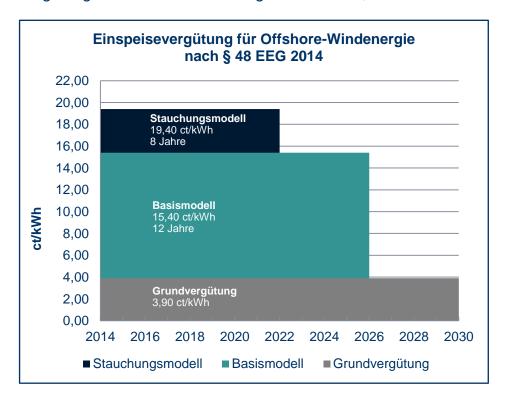
01.01.2013

Inkrafttreten EnWG-Novelle 2013 mit Einführung regulatorischer Systemwechsel:

- Szenariorahmen, ONEP 2013, BFP Nordsee/Ostsee (AWZ)
- BNetzA: Leitfaden zur Entschädigungsregelung
- Festlegungsverfahren zur Kapazitätsübertragung/ -zuweisung

2014

Bundesbedarfsplangesetz, ONEP 2014, bei Knappheit von Netzkapazität wird Versteigerung/Auktionierung von Anbindungskapazitäten durch BNetzA diskutiert

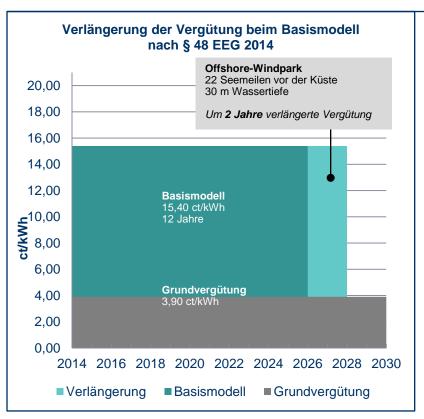

2013/2014 EEG-Novellierung 08.04.2014 Beschluss Bundeskabinett 01.08.2014 Inkrafttreten EEG 2014

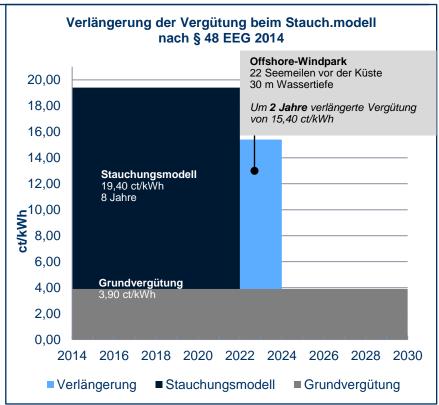
Vergleich EEG 2011/14 – Vergütungssystem für Offshore-Wind

	§ 31 EEG 2012	§ 48 EEG 2014	
Grundvergütung	3,5 ct/kWh	3,9 ct/kWh*	
Basismodell	15,0 ct/kWh für 12 Jahre	15,4 ct/kWh* für 12 Jahre	
Stauchungsmodell	19,0 ct/kWh für 8 Jahre Inbetriebnahme vor 01.01.2018	19,4 ct/kWh* für 8 Jahre Inbetriebnahme vor 01.01.2020	

^{*}Vergütung beinhaltet Vermarktungskosten von 0,4 ct/kWh

EEG 2014 – Verlängerung der (Anfangs) Vergütung




§ 31 EEG 2012

§ 48 EEG 2014

Verlängerung

- Für jede über zwölf Seemeilen hinausgehende volle Seemeile Verlängerung um 0,5 Monate
- Für jeden Meter über 20 Meter hinausgehende Wassertiefe Verlängerung um 1,7 Monate

Kostensenkungspotenzialstudie

prognos

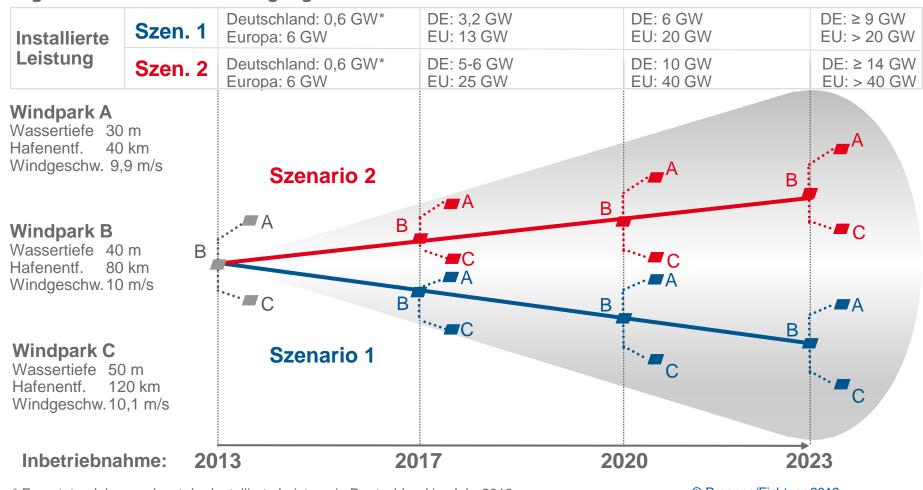
Kostensenkungspotenziale der Offshore-Windenergie

in Deutschland

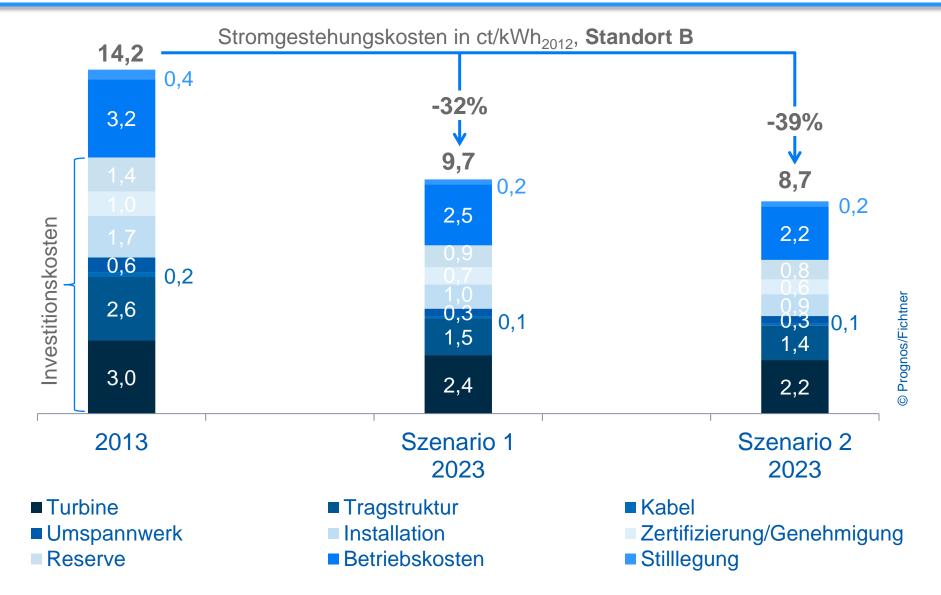
Kurzfassung

Veröffentlichung der Kurzfassung im Aug. 2013

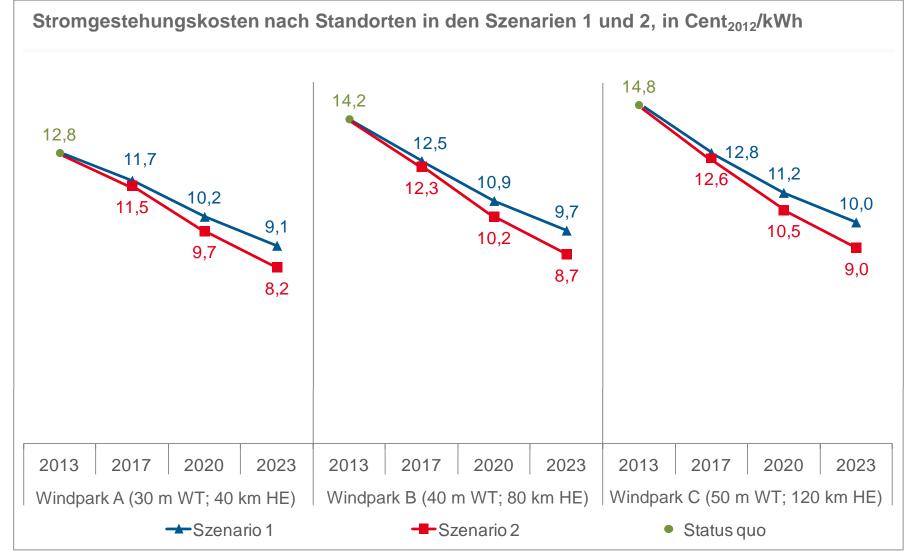
Auftraggeberkonsortium (Koordination: SOW)



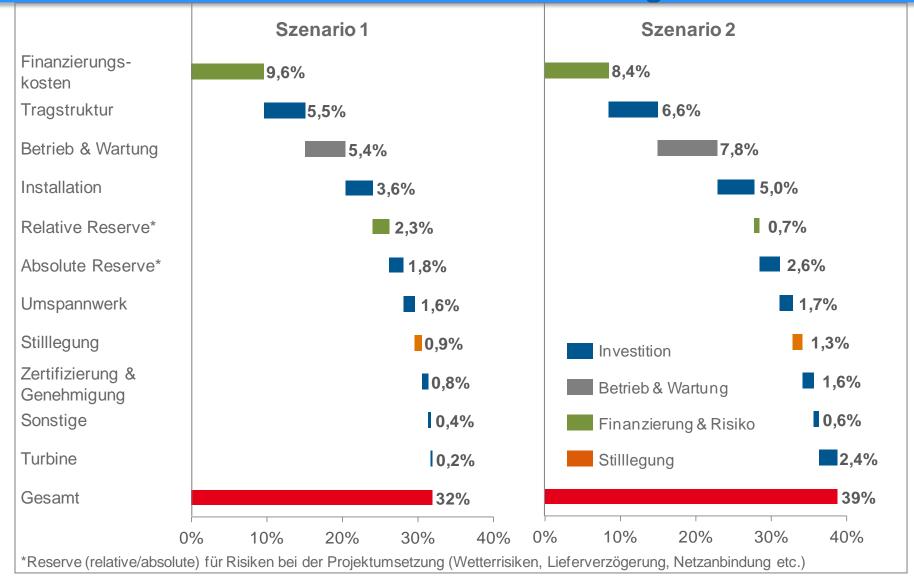
Ausgangsbasis: 2 Ausbauszenarien, 3 Standorttypen (Nordsee)

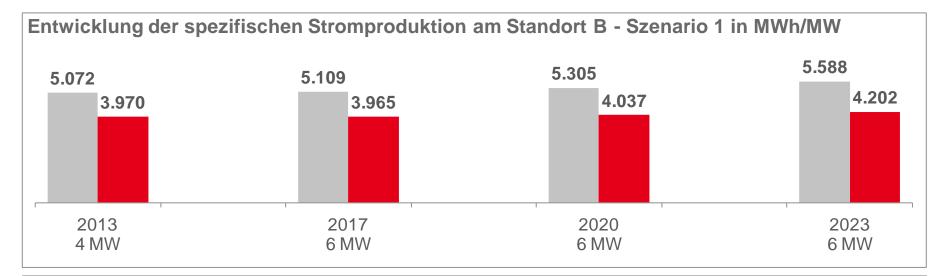

Ergebnis der Szenarienfestlegung

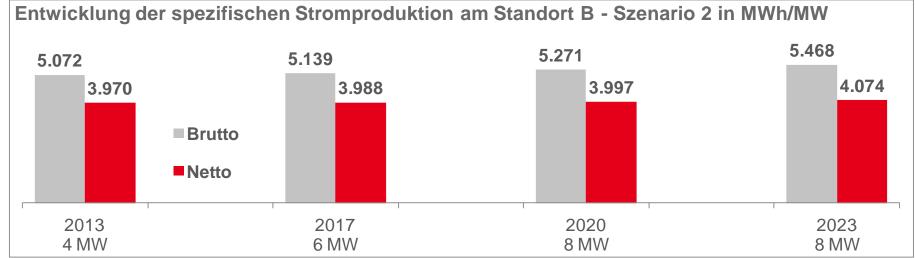
^{*} Erwarteter Jahresendwert der Installierte Leistung in Deutschland im Jahr 2013


© Prognos/Fichtner 2013

Ergebnis: Stromgestehungskosten und Kostensenkungspotenziale am Standort B (nominal)


Die Stromgestehungskosten sinken bis zum Jahr 2023 im Mittel über alle drei Standorte um 31 % (Szen. 1) bis 39 % (Szen. 2)


2/3 des Kostensenkungspotenzials entfallen auf Technik & Betrieb, 1/3 Finanzierung

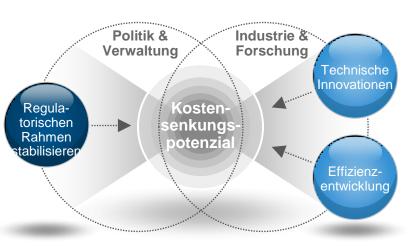


Exkurs Stromproduktion: Einflussfaktoren Nabenhöhe, Rotordurchmesser, Abschattungsverluste u. Anlagenverfügbarkeit

© Prognos/Fichtner

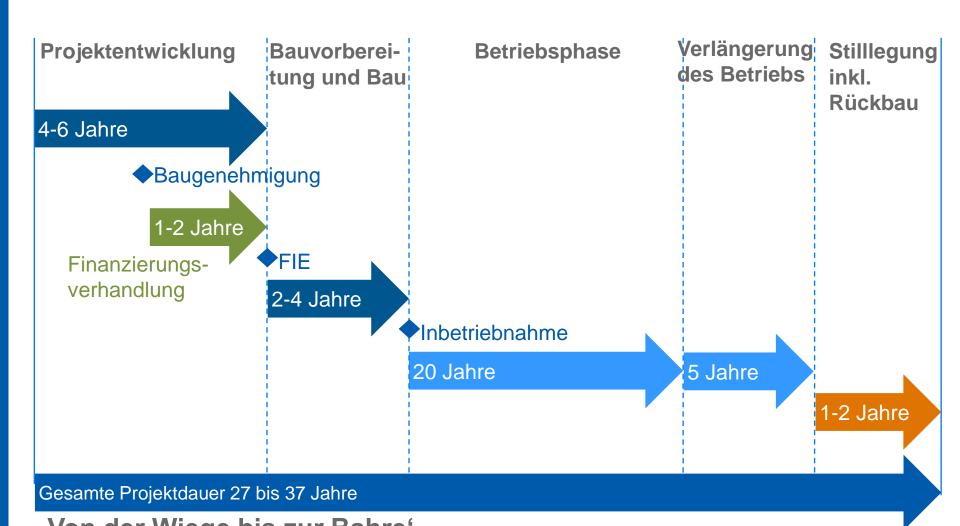
Handlungsempfehlungen aus Kostenstudie (Prognos/Fichtner)

Handlungsempfehlungen politisches und regulatorisches Umfeld:


- Stabile gesetzliche und politische Rahmenbedingungen schaffen
- Standards für Anlagenkomponenten und Netzanschlüsse definieren
- Zertifizierungs- und Genehmigungskriterien vereinfachen

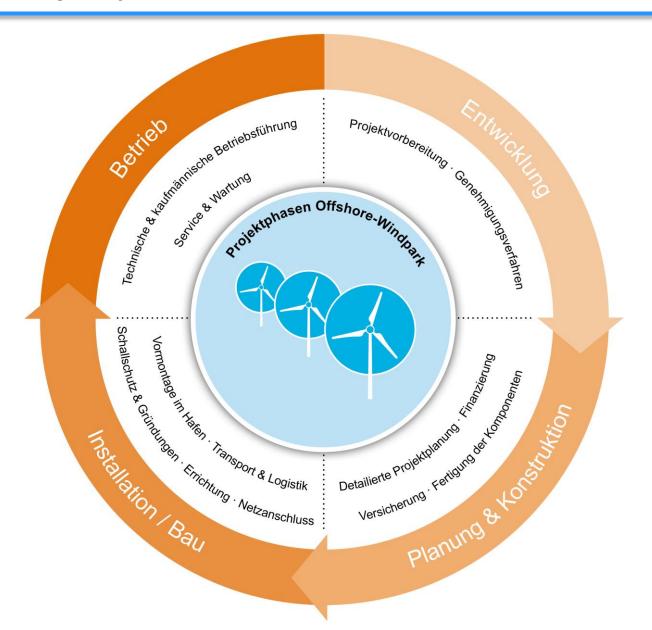
Handlungsempfehlungen an die Industrie zur technischen Innovation:

- Anlagentechnik auf hohe Auslastung oder maximalen Windertrag optimieren
- Bestehende <u>Tragstrukturen</u> optimieren und neue entwickeln
- <u>Installationslogistik</u> verbessern
- Forschung und Entwicklung intensivieren


Handlungsempfehlungen an Industrie zur Steigerung der Effizienz:

- Betreiberübergreifende <u>Wartungs- und</u> <u>Installationskonzepte</u> entwickeln
- Serienfertigung vorantreiben

Lange Planungs- und Realisierungszeiträume vor IBN eines OWP erfordern langfristig stabile Rahmenbedingungen



,Von der Wiege bis zur Bahre' Idealisierter Zeitplan OWP-Entwicklung

© Prognos/Fichtner

Projektphasen eines OWP

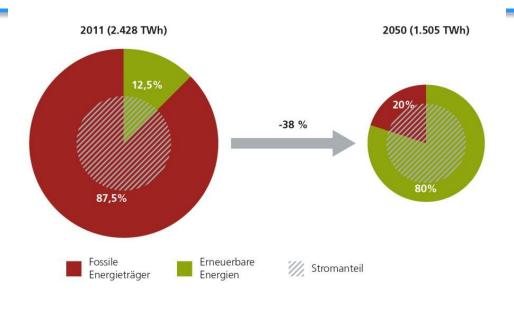
Energiewirtschaftliche Vorteile von Offshore Wind

FRAUNHOFER-INSTITUT FÜR WINDENERGIE UND ENERGIESYSTEMTECHNIK

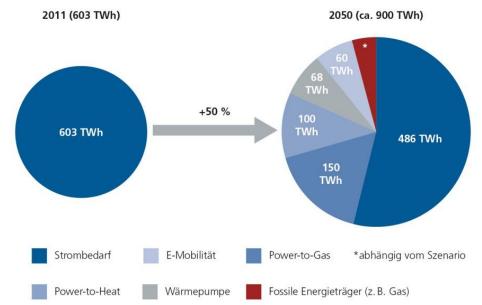
ENERGIEWIRTSCHAFTLICHE BEDEUTUNG DER OFFSHORE-WINDENERGIE FÜR DIE ENERGIEWENDE

Kurzfassung

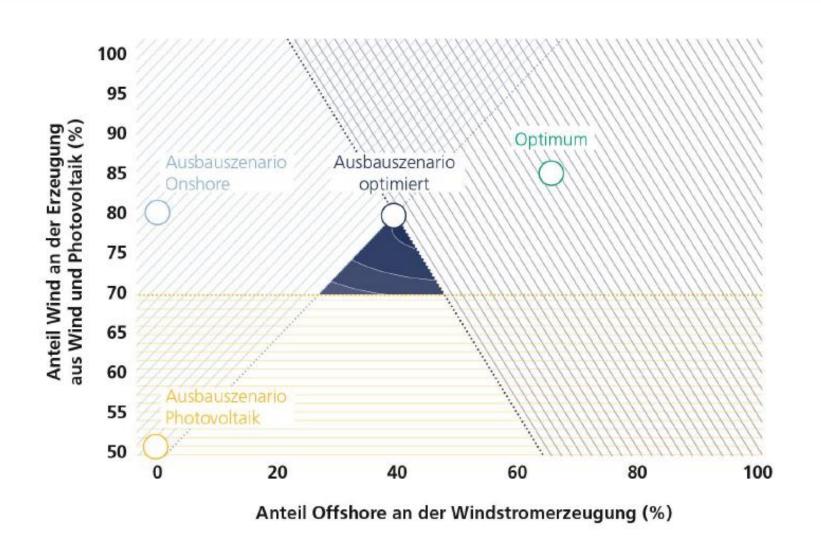
IM AUFTRAG DER



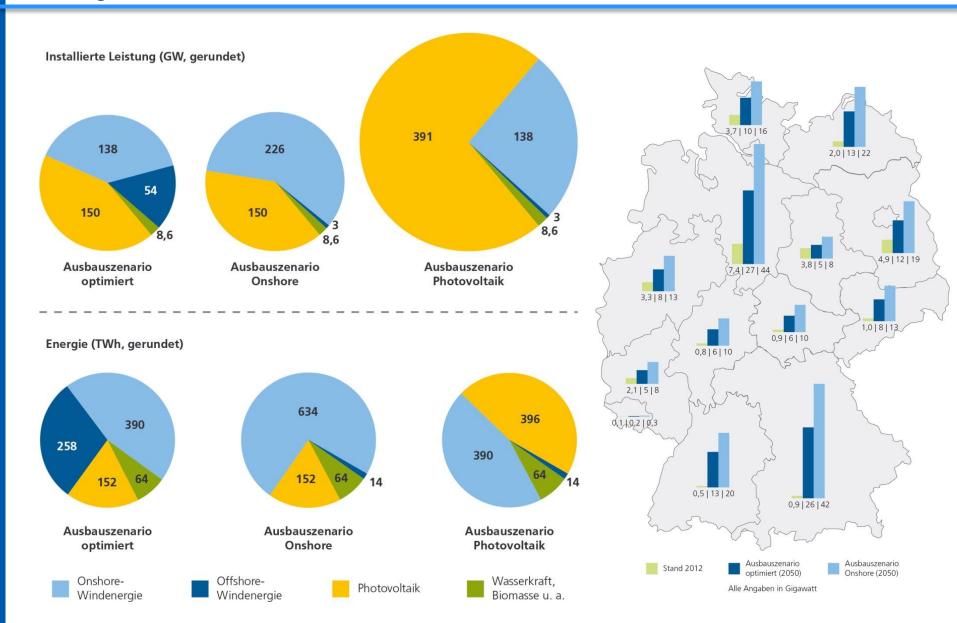
Kernaussagen


- 1. Energiewende benötigt bis 2050 800 TWh aus Wind und Solar – nur möglich mit großem Anteil von Offshore-Windenergie!
- 2. Offshore-Wind führt zu **geringeren Flexibilisierungskosten**
- 3. Offshore-Wind hat annähernd *Kraftwerkseigenschaften* – wichtig für Energieversorgungssicherheit (Regelenenergie, hohe Fahrplantreue, etc.)
- 4. Stabiler und **kontinuierlicher Ausbau** von Offshore-Wind Voraussetzung zur Nutzung der energiewirtschaftlichen Vorteile und Kostensenkungspotenziale

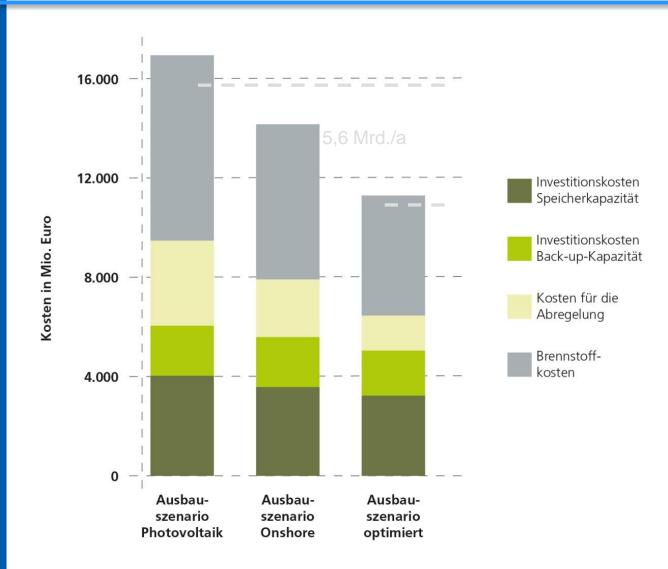
Energie im Wandel: Der Mix im Jahr 2050


■ 80 % EE in 2050 (Primärenergie)

- Stromerzeugung zu 95 % aus EE
- Deutliche Erhöhung des Strombedarfs durch Kopplung von Strom-Wärme (KWK), E-Mobilität und Power-to-heat, Power-to-gas



Szenario-Input – Ideale Verteilung Wind-PV

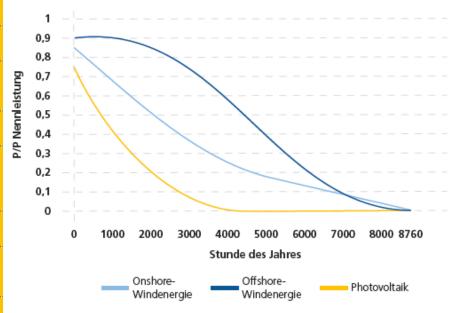


Kenngrößen der Szenarien

Systemkosten sinken durch Offshore-Windenergie

Kosteneinsparung durch OWE beträgt 3-5,6 Mrd. € pro Jahr (ab 2050)

<u>Grund:</u> niedrigere Flexibilisierungskosten


Szenarioergebnisse

Übersicht Flexibilisierungskosten p.a. und Stromgestehungskosten (2050) WINDENERGE

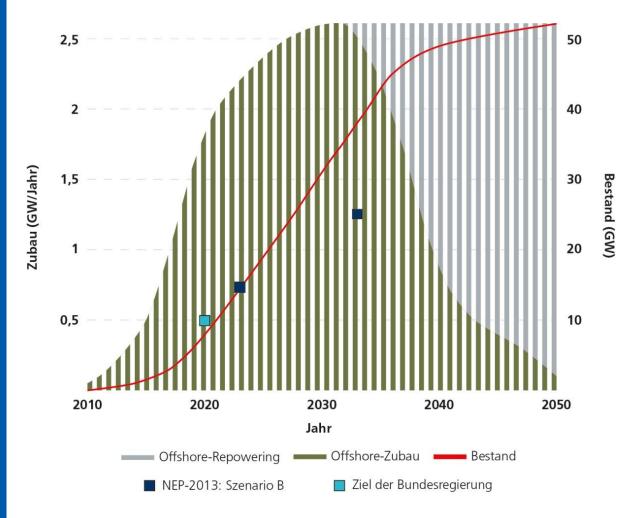
	Ausbauszenario optimiert	Ausbauszenario Onshore	Ausbauszenario Photovoltaik
Back-up- Kapazität (GW)	54,4	62,0	62,6
Investitionskosten – annuitätisch (Mrd. Euro)	1,8	2,0	2,0
Reststrom- nachfrage (TWh)	53,4	68,9	81,8
Brennstoffkosten bei Deckung der Reststromnachfrage (Mrd. Euro)	4,8	6,2	7,4
Speicherkapazität (GW)	67,9	74,3	83,9
Investitionskosten – annuitätisch (Mrd. Euro)	3,2	3,6	4,0
Überschuss- produktion (TWh)	20,3	35,9	51,2
Kosten für die Abregelung	1,3	2,3	3,4
Flexibilitätskosten pro Jahr kumuliert (Mrd. Euro)	11,1	14,0 (+26%)	16,8 (+50%)
Stromerzeugungs- kosten pro Jahr (Mrd. Euro)	52,4	50,4	52,9
Gesamtkosten Flexibilität und Stromerzeugung (Mrd. Euro)	63,5	64,5	69,7

Kraftwerkseigenschaften Offshore Wind:

Stetigere Stromproduktion/hohe VLS-Zahl

→ Ausbauszenario optimiert

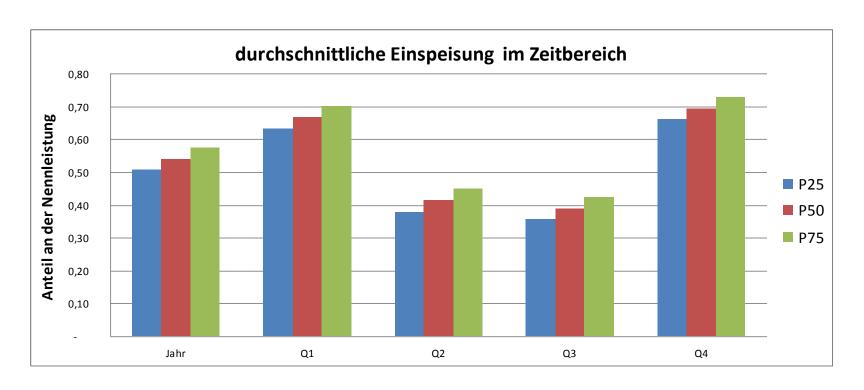
€ 2.9 – 5.6 Mrd. Einsparung bei Flexibilisierungskosten p.a.


Gesamtkostenbetrachtung

→ :Ausbauszenario optimiert

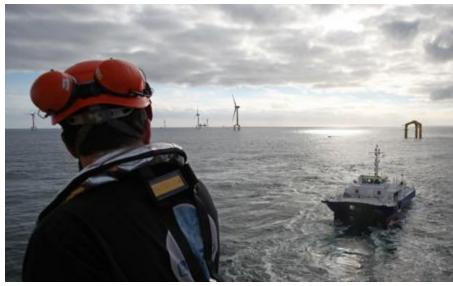
€ 1-6.2 Mrd. Kosteneinsparung p.a.

Kontinuierlicher Ausbau schafft Kostensenkung und energiewirtschaftliche Beiträge



- Rascher OWE-Ausbau hilft, später übermäßig starken Zubaubedarf zu vermeiden
- Nutzung von Lernkurven
- Erhalt der deutschen Technologieführerschaft
 - schafft Arbeitsplätze
- macht Energiewende möglich

FAZIT – Vorteile Offshore-Windenergie



- Sinnvoller Mix aller EE notwendig, Systemeigenschaften beachten
- Sehr gute Windverhältnisse offshore, hohe Volllaststundenzahl
- Junge Technologie = Großes Kostendegressionspotenzial
 - → STUDIEN i.A. der Stiftung (Kostensenkungspotenziale und Systemische Bedeutung von Offshore-Wind) Sommer/Herbst 2013

Vielen Dank für Ihre Aufmerksamkeit!

Andreas Wagner

Stiftung OFFSHORE WINDENERGIE

Büro Berlin:

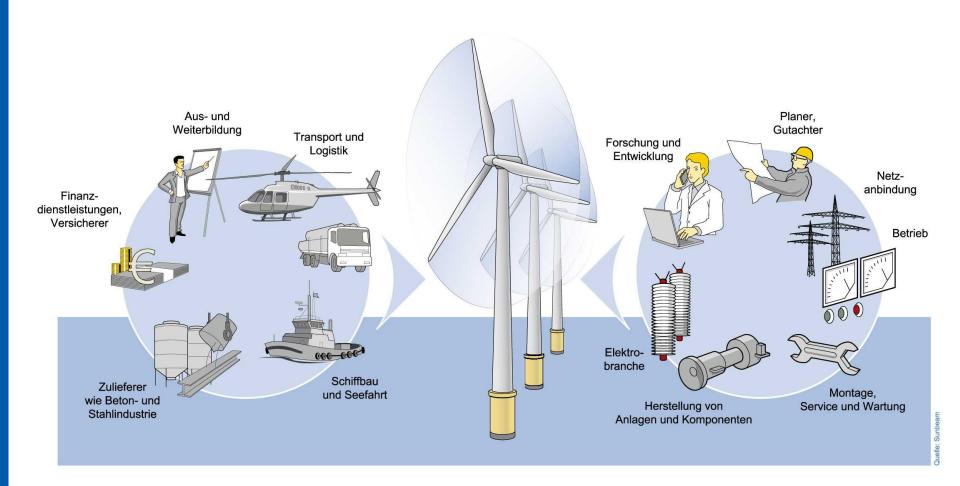
Schiffbauerdamm 19, 10117 Berlin

Tel: +49 30 27595241

a.wagner@offshore-stiftung.de

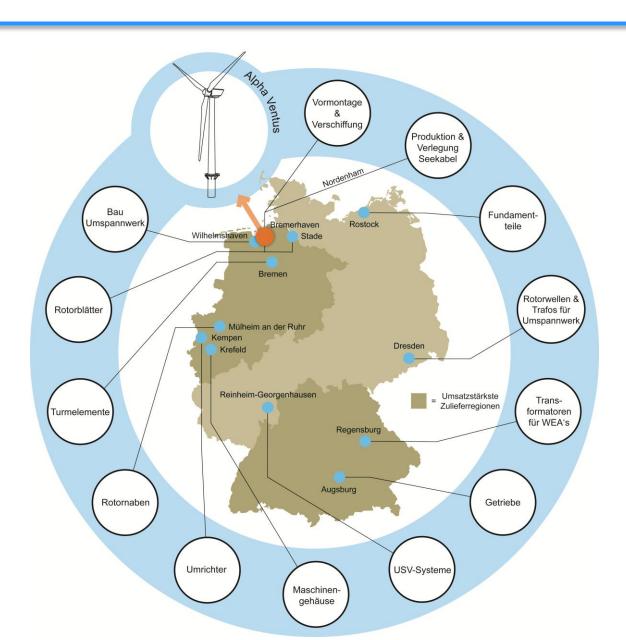
Informationsplattform Offshore-Wind:

www.offshore-windenergie.net


Geschäftsstelle Varel

Oldenburger Str. 65, 26316 Varel info@offshore-stiftung.de

www.offshore-stiftung.de


EXKURS: Wertschöpfungskette Offshore-Windenergie

Wertschöpfung am Beispiel Testfeld alpha ventus

Entwicklung der Beschäftigtenzahl

2021: 33.100

2016: 24.400

2012: 18.000

2011: 8.600

2010: 6.900